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Abstract: Many public school districts in US draw neighborhood school boundaries that assign students to
schools, based on their location proximity. Such boundaries have been criticized for creating homogeneous
communities, limiting diversity, and reinforcing socioeconomic disparities. Research shows that the
socioeconomic status of a neighborhood is a significant predictor of neighborhood's academic achievement,
and since school districts typically align with residential neighborhoods, the traditional attendance areas
can create unequal access to educational opportunities.

In this paper, we create new larger "zones', allowing students to apply to any school within their zone.
First, larger zones will provide families with more options to find a school that best suits their child's needs
and interests. Second, by creating new zone boundaries that consider socioeconomic diversity and prioritize
equity, we can work towards ensuring that every child has access to a high-quality education, regardless of
their zip code. Diverse schools not only provide educational benefits but also promote social and emotional
growth, preparing students for the realities of a diverse world. Therefore, changing the zone boundaries for
public school assignments is necessary to create more inclusive and equitable schools that prepare students
for a diverse society. Our work informed the design and approval of a zone-based policy in 2020 for use
starting the 2026-27 school year, and is being used to support policy implementation.
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1. Introduction

For U.S. public schools, geographic boundaries have long played an important role in determining
which students attend which schools. For many districts, the zones take the form of neighborhood
boundaries used to determine each student’s neighborhood school. In a recent student assignment
policy redesign, the San Francisco Unified School District passed guidelines calling for multi-
school zones. Each zone contains multiple schools. Families can express preferences over schools
within their home zone, and students are assigned in a centralized way to one of the schools in their
zone. Multi-school zones offer a promising middle ground between neighborhood assignment and
an unrestricted citywide choice process, balancing between the segregatory forces of residential
segregation and choice-driven segregation. However, the problem of optimizing multi-school zones
has not been well studied.

The zone design task is to design a set of geographic boundaries that induce the best zone-based
student assignment policy. However, this problem is both computationally and socially difficult.
Zones impact important outcomes such as school diversity directly through geographic restriction,
and also indirectly through the interaction of such restrictions with families’ choice patterns. More-
over, the zone design problem is highly constrained. Imposing ideal constraints often leads to infea-
sibility, requiring a human-centered approach to identify relaxable constraints, despite potential
disagreements among stakeholders.

We propose an iterative framework to address the computationally challenging and multi-
objective zone design optimization problem. Our framework consists of two key components: 1)
a Consumer Search process that uses interactive tools to engage stakeholders in identifying and
selecting zoning constraints, and 2) Computational Methods to generate solutions satisfying these
constraints. In the Consumer Search process, we identify constraints that match stakeholders’ pref-
erences. We update the constraint set by modifying metrics, adding new constraints, and adjusting
constraint formats and thresholds based on stakeholder input. Our primary goal is to help stakehold-
ers and decision-makers explore the frontier of feasible school zonings and understand the trade-offs
between different solutions under various constraints and thresholds. In the Computational Methods
component, we employ optimization models and Markov Chain Monte Carlo (MCMC) methods
to find zone boundaries that satisfy the constraints identified through Consumer Search. We solve
and accelerate these models using multi-level zone design and recursive approaches. Generating
each zoning solution is computationally intensive, so we must repeatedly solve the problem with

different constraint sets to support the iterative Consumer Search process. Our iterative framework
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alternates between the Consumer Search and Computational Methods components, enabling stake-
holders to refine their preferences based on generated solutions and feasibility constraints, thereby
exploring trade-offs between different zonings.

We find that the multilevel optimization approach consistently produces better zone-level statis-
tics compared to other methods. To evaluate the impact of zones on student outcomes, we use a
simulation engine that models student preferences and assigns students to schools under each zoning
policy. Comparing the resulting assignments to the current policy, we find that larger zones gener-
ally perform better on diversity metrics, with the 6-zone and 7-zone policies being the only ones
that reduce both the number of high-poverty schools and the percentage of historically underserved
students in those schools. Conversely, smaller zones tend to perform better on proximity measures,
with the 18-zone policy substantially increasing the share of students assigned to a school within
half a mile. These methods and findings will support the San Francisco Unified School District
(SFUSD) in selecting zones for its new student assignment policy, scheduled for implementation

in the 2026-2027 academic year.

2. The Multi-School Zone Design Problem

Problem Statement. In 2018, the San Francisco Unified School District (SFUSD) initiated an
exploration to redesign their elementary student assignment policy. The district aimed to create a
system balancing neighborhood assignment and citywide choice, offering students multiple school
options within a limited area. The goals of the redesign were to develop a simple, predictable assign-
ment system that would balance school choice benefits with practical distribution constraints, while
strengthening community connections to local schools, reducing cross-city travel, and creating inte-
grated schools reflecting San Francisco’s diversity.

The initial proposal included geographic zones containing multiple schools, with families having
access to schools within their zone. In December 2020, the SFUSD Board of Education approved
the use of a zone-based plan without specifying exact boundaries. This paper outlines our work on

the zone design process and the facilitation of selecting a final zone map for implementation.

2.1. Understanding the Complexities of Multi-School Zone Design

Designing multi-school attendance zones is a complex task that involves creating geographic bound-
aries to optimize the assignment of students to schools. This problem presents both computational

and social challenges. The zones must satisfy multiple balance constraints, such as ensuring an even
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distribution of student population across zones, maintaining a similar percentage of racial minority
students in each zone, and balancing the population of students with low socio-economic status
between zones. These competing objectives, along with the need to consider factors like compact-
ness and contiguity, make the zone design problem computationally difficult.

While the problem of designing boundaries for neighborhood schools has been well studied
({1, 2, 3), multi-school zone design introduces an additional complexity: the need to consider fami-
lies’ school preferences within each zone. In the neighborhood school setting, students are simply
assigned to their local school, so the neighborhood composition directly translates to the school
composition. In contrast, when designing multi-school zones, we must account for the fact that fam-
ilies have a choice among schools within their zone. This means that the ultimate goal is to impact
the characteristics of students after their assignment to schools, not just the zone-level statistics.
Incorporating this choice process into the zone design problem is crucial, as it influences school-
level outcomes such as diversity. Abeledo and Rothblum (4) demonstrate how to implement the
Deferred Acceptance algorithm with an integer program given student preferences. However, com-
bining the zone design and choice estimation tasks into a single optimization problem leads to an
extremely large optimization problem with the number of variables on the order of O (n*), making
it intractable even with computational tricks and approximations (see Appendix @).

In addition to the computational challenges of building zones, the multi-school zone design prob-
lem also includes a zone policy selection problem similar to problems encountered in the human-
computer interaction (HCI) space. The zone optimization problem is highly constrained, and imple-
menting all of the district’s ideal constraints (i.e., exact racial balance among zones) yields no
feasible zoning solutions. In the absence of computation tools, stakeholders are often unable to
precisely quantify their desired constraints (e.g. how tight the balance constraints need to be), as
such decisions involve implicit value trade-offs with other constraints specific to their school dis-
trict (e.g. the geography of segregation, history of educational inequality). Moreover, stakeholders
may disagree on which constraints should be relaxed to obtain feasible solutions, given the inherent
trade-offs involved. As a result, we need to understand stakeholders’ opinions, while identifying the

combination of constraints that can be relaxed to yield feasible zone solutions.

2.2. Framework

To address both human-computer interaction and computational challenges, we propose an iter-

ative framework consisting of two key components. The first component is a Consumer Search
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Figure 1: Iterative framework for multi-school zone design. Blue step: consumer search process to identify zoning
constraints based on stakeholder preferences. Red steps: computational methods to generate zones satisfying constraints

while optimizing zone shapes and balance.

process to engage stakeholders in identifying and selecting zoning constraints. The second compo-
nent, Computational Methods for School Zoning, generates solutions that satisfy these constraints
while optimizing zone shapes and balance.

Figure [l| depicts the framework, with computational challenges in red and human-computer inter-
action components in blue. Stakeholders refine their preferences through an iterative process of
identifying constraints and generating corresponding zoning solutions. Section E] describes an inter-
active tool we built using large language models to help combine these steps. Section H provides
a comprehensive description of the various computational approaches employed to create school
zones that meet the identified constraints while optimizing zone shapes and satisfying additional
balance requirements when feasible.

Since the full problem of capturing the impact of choices while designing zones cannot be solved
directly, we initially focus on generating an ensemble of zones and address choice in a later step.
This ensemble approach narrows the problem space, allowing for subsequent optimization over a
more manageable set of solutions. To address the shortcoming of our initial model, we evaluate these
zones using a choice-based assignment process. We employ a simulation engine from companion
work, which incorporates a multinomial logit choice model, district priorities, and the Gale-Shapley
deferred acceptance algorithm (5) with diversity reserves. The resulting assignments are then used

to evaluate how well the zone-based policy meets the needs of the district.

3. Computational Methods for School Zoning

This section focuses on computational approaches for generating school zones based on the con-

straints identified through the Consumer Search process. We adapt techniques from school neigh-
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borhood boundary design and political redistricting to tackle the problem of multi-school zoning,
and apply our techniques in a case study from San Francisco. Our goal is to generate an ensem-
ble of solutions that represent different design decisions or value judgements, aiming to find zones
that align with those values while achieving compact shapes and satisfying additional balance con-
straints when possible. The constraints used in this section were identified via a Consumer Search
process in close collaboration with staff at SFUSD. This helped identify the most restrictive and

balanced set of constraints that result in feasible solutions.

The school zoning problem shares similarities with other geographic boundary design problems,
such as political redistricting. Political redistricting aims to draw compact and representative bound-
aries delineating political districts. Residents of each district elect a single representative, often for
the U.S. House of Representatives or state legislatures. In this context, the goal is typically to find
a ‘fair’ districting, where fairness is defined by the number of elected officials of a particular group
in a given map relative to the average number of representatives in all other maps.

Optimization-based methods, commonly used in both school neighborhood design and political
redistricting, employ integer programming or constraint programming to assign geographic units to
zones based on specific objectives (6, [7, 8, 9). While these methods align well with the multi-school
boundary design problem due to their ability to incorporate hard constraints, the computational
complexity of solving large-scale integer programs necessitates reducing the problem space appro-
priately for the given context.

In political redistricting, ensemble-based methods like Metropolis Markov Chain Monte Carlo
(MCMC) are used to generate large, diverse, and representative samples of possible redistricting
plans (10, [1 1/). These methods model redistricting as a graph partition problem and provide a way to
transition between neighboring partitions. The representative sampling achieved by these methods
is crucial for assessing the fairness of a given map relative to the ensemble. However, the multi-
school zone design problem differs from political redistricting as it prioritizes finding a set of well-
performing maps rather than ensuring representativeness in the generated ensemble.

We adapt both optimization-based methods and MCMC methods to provide novel computational
approaches to the school redistricting problem. Both methods construct zones by combining smaller

geographic units, such as census blocks, census block groups, or attendance areasﬂ, depending on

1'The City of San Francisco is divided into approximately 6,000 census blocks by the US Census Bureau. These blocks are fur-
ther aggregated into 579 census block groups, each containing 8 to 12 blocks. SFUSD also partitions the city into 59 attendance
areas, which represent school neighborhoods under the current assignment policy. The boundaries between census block groups and
attendance areas do not always align. Census blocks are the smallest geographical unit that we use to solve the zoning problem.
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the desired level of granularity. In this section, we present a comprehensive description of our novel
computational approaches. We first discuss the key differences between school zoning and political
redistricting in . We then present optimization-based approaches for school zoning, including
integer programming and constraint programming techniques in @ We then examine ensemble-
based MCMC methods adapted from political redistricting in @ In appendix E?I, we analyze the
problem of jointly optimizing resource allocation and designing zones in a single optimization step,

using the example of assigning special education students to their programs.

3.1. School Zoning vs. Political Redistricting: Computational Challenges

While school zoning and political redistricting share some similarities, there are several key dif-
ferences that make school zoning a more challenging problem. These distinctions necessitate the
development of tailored approaches, as existing methods from political redistricting literature can-
not be directly applied.

Limited Feasible Solutions. School zoning involves a more extensive set of constraints compared
to political redistricting, such as balancing student populations, racial diversity, and socio-economic
status across zones. The increased number and complexity of these constraints significantly reduce
the number of feasible solutions that satisfy all the desired criteria. Consequently, local search-based
algorithms struggle to effectively explore the solution space, frequently encountering infeasible
options.

Skewness of Population Distribution In school zoning, there are multiple metrics that need to be
balanced across zones, including the shortage of seats in a zone compared to the number of students
in a zone, and the number of schools in a zone. The distribution of school seats across geographical
units is highly skewed, with each school acting as a geographical unit with a very high concentration
of seats compared to the surrounding units. Schools create a significant spike in seat capacity that
must be accounted for when balancing enrollment across zones. Additionally, the distribution of
the number of schools across blocks is also highly skewed, with most blocks having zero schools
and a small fraction of blocks (e.g., 0.7%) containing one school.

In contrast to school zoning, the population of voters in political redistricting tends to be more
evenly distributed across the geographic units under consideration. Although there may be some
variation in population density, extreme concentration of voters in specific areas is less common.
This relatively uniform distribution facilitates the balancing of populations across districts by algo-

rithms that use local search-based methods (e.g., swapping blocks on boundaries between zones) to
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make incremental changes to district boundaries. However, in school redistricting, the movement of
a geographical unit containing a school from one zone to another can lead to drastic changes in seat
counts, resulting in significant imbalances in seat shortages or surpluses and the number of schools
across zones. These imbalances are challenging to resolve through incremental adjustments, often

causing local search-based algorithms to become stuck in suboptimal solutions.

3.2. Optimization-Based Methods

Optimization-based methods are commonly used in both school neighborhood design and political
redistricting (3, 8, 6, 7, 9, 12, (13, 14, [15, 16). These methods typically employ integer program-
ming to assign geographic units to zones according to specific objectives. In the case of the San
Francisco Unified School District, directly solving the optimization model for the entire school dis-
trict is computationally challenging. To address this, we present two optimization-based approaches
adapted from existing techniques, aiming to reduce the problem size and computational burden. The
first approach is a multi-level method that utilizes solutions from less granular levels (e.g., atten-
dance area) to initialize a partial solution at more granular levels (e.g., block). The second approach
employs recursive methods to handle the challenge of dividing the city into a large number of zones.

Multilevel algorithms are a class of graph-based algorithms that create multiple levels of graphs
by an iterative coarsening procedure (where adjacent nodes are merged to create a smaller graph)
and then mapping a district solution from the reduced graph instance back to the the original graph
(17, 18, 19, 20). These algorithms are considered the most effective for graph partitioning prob-
lems in applications such as VLSI design and image processing (21)). The multilevel paradigm has
also been adopted for other combinatorial optimization problems, such as the traveling salesman
problem (22) and graph-drawing (23). We adapt the multi-level approach to school zoning and
demonstrate that solving a less granular optimization problem can provide valuable insights and
serve as a starting point for generating more refined solutions.

Recursive algorithms have been employed to increase the speed of optimization in political redis-
tricting (24, 8, 25, 26). Gurnee and Shmoys (8) propose a two-stage optimization approach, sim-
ilar to our method, using a randomized divide-and-conquer column generation heuristic to opti-
mize fairness. They first generate one trillion distinct district plans by exploiting the composi-
tional structure of graph partitioning problems and then optimize over this set. Other recursive
approaches include the shortest split-line algorithm (25) and the diminishing halves algorithm (26).

We introduce an overlapping recursive approach to school zoning and show that it provides a viable
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approach, particularly in settings where desired zones are of similar size with geographic units used
in the multi-level approach.

Constraint programming offers an alternative to integer programming, leveraging both arithmeti-
cal and logical algebra to handle nonlinear constraints. Gillani et al. (3) apply constraint program-
ming to redraw attendance boundaries around each elementary school, aiming to reduce school
segregation, using constraint programming. We find that a constraint programming approach can

provide a 3x speed-up compared to the direct mixed-integer programming approach (section @).

3.2.1. Mixed Integer Programming Formulation We formulate the school zoning problem
as an integer program, drawing on established approaches in the literature (13, 3). Our formulation
adapts these existing models to the specific context of school zoning. Our main adaptation is incor-
porating pre-defined zone centroids to help enforce contiguity, as well as an alternative method that
does not rely on predefined centroids. Let U denote the set of predefined geographic units and Z
represent the set of zones, each associated with a centroid unit z € U. For each unit u € U and zone
z€Z,letx,,€0,1 be a binary decision variable indicating whether unit u is assigned to zone z.
The integer program aims to allocate geographic units to zones while adhering to the following
objectives and constraints:

Feasibility The following constraint ensures that every unit belongs to exactly one zone:

> xuz=1 VueU (1)

7€Z

Contiguity. Contiguity ensures that every part of a school zone is reachable from any other part
without leaving the zone, which is important for school commutes and interpretability. However,
incorporating contiguity constraints into an optimization approach is challenging. We adapt a conti-
guity constraint formulation from ([13), which requires pre-defined zone centroids as starting points
for building each zone. Let d, ; be the distance between unit # and the centroid of zone z.H The
contiguity constraint is given by:

Xuz < D, % VueUzeZz )
viveN(u),dy ;<dy ;

Equation () ensures that unit u is assigned to zone z only if at least one of its neighbors that is
closer to the zone centroid is also assigned to the same zone. This constraint guarantees a “path” of

closer neighboring areas connecting each unit to the zone centroid.

2 Distance is calculated using the geographical center of each unit, based on the 2020 census shapefile.
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While constraint () is sufficient for contiguity, it is not necessary, and may exclude some valid
contiguous zone maps (Appendix @). Alternative approaches to enforce contiguity include using
different distance measures, such as graph distanceH, solving without contiguity constraints (27)
then using a heuristic to modify the discontiguous solution (28), employing complex constraints on
the units’ dual graph (29)E, or using cutting plane methods (30).

In our problem, a centroid is a pre-defined geographical unit within each zone that serves as a
reference point for ensuring contiguity. Unlike attendance area redistricting (3, 2) where each zone
contains one school as a natural centroid, our zones consist of multiple schools, complicating cen-
troid selection. We address this by considering high-popularity schools dispersed throughout the
city as centroids and building zones around them. In collaboration with SFUSD staff, we generated
90 different sets of centroids to explore a wide range of solutions. While an alternative approach
could treat centroids as variables in the optimization model, this substantially increases computa-
tional complexity, making it intractable to solve in reasonable time.E

Compactness. A common preference shared by SFUSD officials and families in school redis-
tricting is for compact zones. Compactness requires zones to have a reasonable shape, avoiding
unnecessary elongation or twisting. Compact zones provide a safer environment for children walk-
ing or biking to school, improve traffic flow, reduce congestion, and foster a sense of community.
Moreover, contiguous and compact zone maps are simpler and easier for students and families to
understand.

There are several ways to quantify district compactness, such as summing district perimeters,
comparing a district’s area and perimeter, summing the distance from each geographic unit to the

center of its district, or counting the number of cut edges in the graph representation (i.e., edges

3 Our results are shown using Euclidean distance. We also implemented contiguity with driving distance and graph distance as well,
but did not pursue this approach as it significantly restricted the number of contiguous zones compared to Euclidean distance.

4King et al (29) enforce the following constrains on the dual graph of the set of units, for all centroids z and sets S € (U — N(z) — z).

Xu,z — va,z >1-15]

uelUses N(S)-S veS

This approach requires a number of inequalities that grows exponentially with the number of units, making it intractable for large
problems. To overcome this, they propose running a breadth-first search on the “Geo-Graph” which they show to be more efficient
than some alternatives.

5 Treating centroids as variables would eliminate the need for predefined centroids and provide more flexibility in zone formation.
However, it significantly increases the number of variables, making the problem computationally intractable using standard solvers
like Gurobi.
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whose endpoints are in different districts) (115, 31|, 32, [10, 33).H In the student assignment setting,

we encourage compactness by minimizing the number of cut edges.

Objip=min > by, 3)
uelU, veN (u)
buy>|xy;—xy;| YueUyveN(u),zeZ )

The objective function in (H) minimizes the total number of cuts between neighboring areas that
are assigned to different zonesﬂ. For each unit u € U, the set N (u) consists of its neighboring unitsH.
The decision variable b, , €0, 1, referred to as the boundary cost, indicates whether units « and v
are assigned to different zones. Constraint (@) ensures that b,,, takes a value of 1 if and only if the
adjacent units u and v are assigned to different zones.

Balance Constraints. Another set of constraints common in school redistricting are balance con-
straints within and between zones. School zones should be of a similar size, and provide sufficient
seats for students in the zone. In addition, to guide toward goals of diversity and equity, it is often
desirable to require some level of demographic similarity between ZOHCS.H We capture these balance

constraints as follows.

Sch,,
=Y 7] =) Schyxu| Vzez (5)
uelU uelU

Qshortage Z Puxy, > | Z(Pu — Seat, )x, ;| Vz

u el uelU (6)
e’/
F
qu-xu,z2 (N_QSES)'ZPu-xu,z VzeZ @)
uelU uelU

6 Duchin and Tenner in (32) do a survey on several contour based scores including Polsby-Popper, Schwartzberg, Reock, Population
Polygon and Minimum Convex Polygon score. and provide important short-comings of each scores including Coastline effects,
Resolution instability, Coordinate dependence and Empty space effects.

7 We initially considered incorporating various balance metrics into the objective function alongside compactness. However, this
led to stakeholder’s confusion about the relative importance of each metric and the reasoning behind the suggested solutions. To
improve transparency and control over trade-offs, we decided to focus solely on compactness in the objective function and manage
other balance metrics through constraint levers. After experimenting with different compactness measures, including combinations
of cut edges and squared distances from the centroids, we found that using cut edges alone yielded the best results for our use cases,
promoting compact and contiguous zones while reducing computational complexity.

8 N(u) is the set of units that share a border with unit u according to the 2020 census map shapefile.

2 In prior work on redistricting for attendance area / neighborhood schools, the composition of the zone is the same as the composition
of the schools, and thus is a direct measure of diversity. In SFUSD, while choice allows post-assignment measures of diversity
and equity to differ from zone-level ones, district stakeholders still believed it was important to aim for some level of demographic
similarity between zones (3, 34, 13, 2).
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Rk
Z R],;.xu’Z > (— —ay) - Z:Pu.xu,Z Vz
i N b= (8)

eZ,k
eK

Zone size. For each u € U, let Sch, be the number of schools in unit «. Constraint (H) ensures all
zones have the same number of schools (up to 1 school).@

Seat Shortage. For each u € U, let P, and Seat, be the population of students and number of
seats in unit u respectively. Constraint (B) captures the difference between the number of students
and number of seats in each zone, and ensures that no zone has a seat shortage that is a0r1qg mOre
than its total student population. In SFUSD, we set @ por1age @ Varying number between 15% and
25% 1

Demographic Parity. For each u € U, let f, be the total socio-economic score of students in unit
u, and let F := ),y fu be the total score over all units.E Similarly, for a set of races KE, and for
each unit u and race k, let R be the number of students of race k in unit u,and let R := ¥, ., R¥
be the total number of students of race k. Let N := . P, be the total number of students in
all units. Constraints ([j) and (E) ensure that the average socioeconomic score of students in each
zone is within aggg of the average socioeconomic score of students in the whole district, and the
proportion of students of a given race k in each zone is within ay of the proportion in the district.
In the SFUSD setting, we set asgs and ay to be a value between 12% and 15%), depending on the

size of the zones being generated.B

10 Unlike in political redistricting, where the principle of ‘one person one vote’ is constitutionally mandated, the population count
does not need to be exactly balanced between school zones. In SFUSD, schools have programs of vastly different sizes (e.g. 22
students vs. 100+ students), and district decision-makers deemed that it was more important to balance the number of options within
zones rather than the number of students within zones.

1 Balancing school seats and student population perfectly is challenging due to year-to-year variations in student population across
zones. Moreover, about 20% of students who apply to SFUSD schools eventually do not enroll (opting for other schooling options),
which helps alleviate the shortage. We vary the allowed shortage based on zone size: for larger zones with 10 schools each, we set
shortage = 15%, while for smaller zones with 3 schools each, we use @p0r1age =25%, as it is easier to satisfy balance constraints
more tightly with larger zones.

12 In line with the literature (335, 36, B7), we measure socio-economic status using eligibility for Free or Reduced Priced Lunch (FRL),
which is commonly used as a proxy for socioeconomic need in U.S. public schools.

13]n the SFUSD setting, we let K := {White, Asian, Latinx}, as these are the largest ethnicity groups in San Francisco. Other racial
groups, such as African American students, comprise only about 5% of the total student population, making it challenging to balance
them across zones.

14 For larger zones, we use stricter balance constraints (i.e., lower values of #ggs and @) as it is easier to achieve socio-economic
and racial balance when the zones are more expansive. As we generate smaller zones, we gradually relax these constraints (i.e., allow
higher values of aggs and ) to account for the increased difficulty in maintaining perfect balance with more compact zones.
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3.2.2. Multilevel Zone Design via Progressive Refinement Our goal is to solve the MIP for-
mulation of the problem using census blocks as geographic units. This results in 23,847 variables
and 116,645 constraints, which is computationally intractable. To address this computational chal-
lenge, we employ a multilevel optimization procedure (Figure ) that progressively refines the
solution from less to more granular geographic units, adapting the optimization parameters to the

SFUSD context at each level, as detailed below.

Algorithm 1 Multilevel Zone Design

Initialization Step: Solve the mixed integer programming optimization problem in section
using attendance areas as geographic units. (Figure El)

Iterative Optimization: Iteratively use the solution from the previous step, at a lower granularity
level, to find a solution at a higher granularity level.

* Mapping and Trimming Step: Initialize a partial solution using the next level of geographic
granularity.Map each unit to the zone of its corresponding lower-granularity unit from
the previous step. Trim the partial solution by discarding the zone assignment for any units
with only a few adjacent units from the same zone (Figure @ and @). Tighten the balance
constraints by about 8% compared to the previous step to achieve better overall balance in
the final zoning solutionE

 MIP With Initialized Variables: Initialize the MIP variables based on the assignments
from the previous step (at either the block group or block level) and solve for the remaining
variables, ensuring the constraints from subsubsection .2 are satisfied (Figure @ and E).

Local Search Step: Improve the solution obtained at the block level using a local search algo-
rithm that explores the solution space by randomly selecting two adjacent zones, merging them,

and attempting to cut them into two zones again (Figure @). Details presented in Appendix @

16 If the previous step solved the problem using attendance areas, initialize a partial solution using block groups. If the previous step
used block groups, initialize a partial solution using census blocks.

16 For instance, if the goal is to find school zones with a maximum SES deviation of 20% at the attendance area level, the model will
aim for 18% SES deviation at the block group level and 16.5% SES deviation at the block level. This approach allows for satisfying
more restrictive constraints and achieving better overall balance in the final zoning solution by leveraging the ability to find more
balanced solutions when working with smaller units.
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@

4

(a) Initial Zoning (Attendance area) (b) Mapping and Trimming (Block (c) MIP Optimization (Block
Group) Group)

(d) Mapping and Trimming (Block) (e) MIP Optimization (Block) (f) Local Search

Figure 2: The 6 steps of the multilevel zone design.

The trimming step promotes zone compactness by removing isolated units, enabling the opti-
mization model to find improved solutions at the more granular level. While units near the zone
centroid remain in the same zone, boundaries can vary considerably for units further away. The
smaller geographical units in the later stages provide increased flexibility, allowing the model to
create more balanced zones, which is why the balance constraints can be tightened at each step of

the multilevel procedure.

3.2.3. Overlapping Recursive Zoning To enhance computational efficiency at the census
block level, we also introduce an overlapping recursive algorithm that sequentially solves subprob-
lems by dividing the district into overlapping subsections.

The integer programming model for Overlapping Recursive Zoning is similar to the previously
described model , with most constraints imposed in the same way. The objective is to minimize
the boundary cost, and we enforce shortage/overage constraints to ensure that each zone does not
exceed the shortage or overage thresholds. The primary difference in the recursive approach is how it

handles feasibility constraints. Specifically, instead of recursively partitioning the district, it divides
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the district into overlapping subsections, and enforces extended feasibility constraints on the regions
of overlap. B

Our algorithm iteratively optimizes zones around specific centroid sets. Let S, ,, represent the
centroids targeted for zone optimization in a given subproblem (e.g., 7 schools in western San Fran-
cisco, Figure @). Additionally, let S.yenqeq denote an expanded set of centroids that encompasses

Sopt» providing a buffer for the recursive optimization algorithm (e.g., 14 schools in western San

Francisco, Figure @).
o
o0 o
o
Oo ¥
o /s x
B sl el —
3“‘ “'A
(a) Targeted set of centroids in (b) Set of units that must definitely (c) Solving for the extended set of
which zones are being optimized be assigned to one of the zones for zones
around them. Sextended-
00 o
o %o e ¢
5 L
e 5 0 . /
L e mE
(d) An extended set of centroids, (e) Set of flexible units which may (f) Trimming the buffer zones to
including buffer centroids shown or may not be assigned, depending achieve finalized zones around tar-
in gray color. on optimizer objective. get centroids.

Figure 3

Extended Feasibility Let U, be a small set of units within a certain distance (e.g., 3 miles)
from centroids in S, that must be assigned to zones with centroids in Seysendeqs (Equation E, Figure
@). Let Uy.x be a set of flexible units that may or may not be assigned to zones with centroids in
Sextended (Equation , Figure @). Both U,,,: and U ¢, are determined based on the targeted set

of centroids. The remaining units should not be assigned to any centroids in Sexsended-

17 The feasibility constraint determines which units should be assigned to the subproblem zones being optimized. Dividing the district
into two sections (e.g., West and East) and enforcing a feasibility constraint },, x,, , = 1 for all u € West would result in the same
issues as the Divide and Conquer algorithm
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Equation 10 allows the optimizer to decide if assigning U ¢, units to Seysendeq c€Ntroids improves

the objective function while satisfying all constraints. Equation [l 1| ensures that units more than a

specific distance (e.g., 5 miles) from all S,ysengeq centroids are not assigned to any Seyzendea School.

Algorithm 2 Overlapping Recursive

Iteratively solve subproblems:
— Select Sexrendea and Sop;
— Select Uy and U gyx
— Solve the optimization for the given set of variables and their
assignment to centroids in S¢ysenqeq (Figure @)
— Fix and finalize the zones around centroids in S, ,; (Figure @)

— Proceeds to solve the next subproblemE

The overlapping recursive algorithm offers greater flexibility in defining feasibility constraints
compared to the Divide and Conquer approach. It allows the optimizer to consider a larger set of
units that could be assigned to the targeted zones. Moreover, the overlapping nature of subproblems
help maintain compactness, as the extended school sets (S¢yendeq) provide a buffer, enabling smooth
transitions between adjacent subproblems.

By carefully selecting the target and extended school sets and determining an appropriate order
for solving the subproblems, we successfully constructed the solution presented in the results section
(Figure ). This process relies on a combination of domain knowledge and experimentation to
balance computational efficiency and solution quality. However, determining the appropriate size
and composition of the sets Seysendeds Sopr> Umust» and U rj.x can be challenging. If the subproblems
are not carefully designed to minimize overlap and redundancy, this method may result in longer

computation times compared to Divide and Conquer approaches.

18 For instance, after solving for the zones in the western part of San Francisco, the algorithm might continue by finding a zoning
solution for the southwestern part of the district while keeping the previously optimized zones fixed.
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3.3. Constraint Programming

Constraint Programming (CP) is a powerful paradigm for solving combinatorial problems, using
both arithmetical and logical algebra to handle highly disjunctive (non-linear) constraints. CP is
applied to a wide range of domains, including scheduling, planning, vehicle routing (38, 39, 40,
3, 41, 42, 43). In our project, we implemented the zone optimization model (Section ) using
CP, which outperformed the Integer Programming IP implementation by approximately 3 times for
smaller subproblems. However, despite this speedup, CP still could not directly solve the zoning
problem due to the large scale. To achieve solutions at higher granularity, we relied on speed-up

techniques such as the multilevel approach (Section ) and the recursive approach (Section

B.2.3).

3.4. MCMC Approach

The school zoning problem shares similarities with political redistricting, as both involve parti-
tioning a geographic area into regions while balancing various criteria and constraints. MCMC
methods have been effective in addressing the computational challenges in political redistricting
via an ensemble-based approach. In this section, we apply this approach to generate an ensemble
of school zones, adapting MCMC methods to the school zoning context.

MCMC methods have proven to be powerful tools for sampling from the vast spaceE of valid
redistricting plans and detecting gerrymandering (44, 45, 46, 47, 48, #49). They are particularly
useful for generating large, diverse ensembles of plans that serve as baselines for comparison (|10,
50, 51)). By contextualizing a proposed plan within a set of alternative valid plans, MCMC can reveal
whether it is an outlier in terms of partisan bias or other metrics. This ensemble-based approach has
been successfully employed in legal challenges to partisan gerrymanders at both state and federal
levels ({10, 50, 10) and used as evidence in several recent court cases (52, 53, 54, 55).

However, the goal in school zoning differs from political redistricting. Given a set of constraints
identified through constraint discovery, the aim is to find compact solutions satisfying all constraints
in the set. In addition, in school zoning it is desirable to generate an ensemble of well-performing
zoning plans is to illustrate the trade-offs between constraints. To adapt MCMC methods to the
school zoning context, we first generate an ensemble of candidate plans using adaptations of the

Recombination (ReCom) and Relaxed ReCom algorithms introduced by (]10) and (56). We weight

19 Even for modestly sized problems, the number of valid districting plans satisfying typical legal criteria can exceed 10190 ([10)
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the Relaxed ReCom algorithms to encourage exploration of well-performing plans. We then filter
the ensemble to extract plans that satisfy the specific school zoning constraints or achieve the best
balance across all criteria.

Sampling Methods for Redistricting (Flip vs. ReCom) A crucial aspect of applying MCMC meth-
ods is the choice of the target distribution from which to sample. The two primary families of ran-
dom walks used for sampling in the redistricting literature are Flip walks (57) and Recombination
(ReCom) walks ([10).

Flip Walks operates by randomly selecting a boundary node at each step and reassigning it to one
of the adjacent zones, while preserving the contiguity of the zones. This naive approach samples
from the uniform distribution over all connected partitions, satisfying the population constraints.
Although simple to implement and computationally fast, Flip walks suffer from slow mixing times
and a tendency to generate highly non-compact zones ([10).

ReCom Walks was introduced by (10) to address the limitations of Flip walks, by making more
substantial changes to the zoning plan at each step. ReCom assigns weights to each zoning plan pro-
portional to the product of the number of spanning trees within each of its zones. The spanning tree
distribution has the desirable property of concentrating probability mass on more compact zones,
as compact zones tend to have a larger number of spanning trees compared to irregularly-shaped
zones (58, 59). Recent studies have successfully applied ReCom to redistricting problems, demon-
strating its effectiveness in efficiently exploring the space of valid plans and redrawing electoral
district boundaries in various states (33, 60).

Temperature-based variants of Flip and ReCom approach, such as simulated annealing@ and
parallel tempering, have been proposed to address the mixing time challenges encountered by these
algorithms (10, 63, 47, 61, 62, 44, 48). However, as demonstrated in our results, the effectiveness
of these techniques is limited when applied to the school zoning problem.

Other MCMC approaches have been proposed to address the limitations of traditional methods
including Forest ReCom (64, 51)), lifting (65, 66, 67) and Sequential Monte Carlo (68). The spanning
tree distribution and its c-biased variants introduced by Charikar et al. (56) offer a promising starting
point to design the Markov chain in school zoning. However, school zoning’s multiple balance

constraints require tailored sampling approaches, which we explore next.

20 Simulated annealing is a technique that has been applied to various combinatorial problems, including redistricting (47, 61, 62, 44,
48). It allows the algorithm to escape local optima by occasionally accepting worse solutions, especially in the early stages when the
“temperature” is high. As the temperature decreases, the algorithm becomes more selective, favoring better solutions and converging
towards the global optimum.
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3.4.1. MCMC approaches for School Zoning To address the limitations of traditional MCMC
approaches in school redistricting, we implement Relaxed ReCom, a variant of the ReCom algo-
rithm (56, [10), and define a tailored sampling distribution for the school zoning context.

School zoning and political redistricting can be modeled as a graph partition problem (32, 69, [70).
The problem is represented by a graph G = (U, E), where U corresponds to geographical units (e.g.,
census blocks) and E connects adjacent units. A zoning (Zi, ..., Z;), assigns each unit u € U to one
of k zones, ensuring each zone forms a connected subgraph of G. The key steps of ReCom are: (I)
Randomly select two adjacent zones. (II) Form a random spanning tree of the induced subgraph
of the selected zones.E (IIT) Cut a uniformly random edge to create two new zones. (IV) If the
new zones meet balance constraints, update the zoning plan. Relaxed ReCom modifies steps (I11)
and (IV) by relaxing balance constraints in (IV) and changing the cut edge distribution in (III) to
balance constraint enforcement and exploration. While more computationally intensive per step than
ReCom or Flip, Relaxed ReCom offers advantages in rapid mixingE and distributional properties.

Algorithm @ outlines the Relaxed ReCom process.

Algorithm 3 Relaxed ReCom (56)

Input: Graph G = (U, E). Zoning (Z, ..., Zx), and the spanning tree for each zone, (71, ..., T}).

Output: A new zoning (Z{°", ..., Z;"). Spanning tree for each zone, (177", ..., T;'*").

For iterationt =1, 2, ...:

* Add a uniformly random edge e that connects two adjacent zones Z; and Z;.

* LetT; and T; be spanning trees of G[Z;] and G[Z;] respectively. T; UT; U{e} forms a spanning

tree for G[Z; U Z;].
* Cutting Edge:
—For each edge f in T; UT; U {e}, removing f creates:
* Two new trees T! and T]’ Let Z! and Z;. be the set of vertices of 7] and T]’. .

Z ifs=iorj
Zs
— Cutting Edge Selection: ChooseEedge f with probability proportional to a predefined

* Let Z{ =

distribution over the resulting zoning (Zf e Z]{).

21 Using Wilson’s algorithm ([71))

22 (56)) demonstrates rapid mixing for grids with balanced homogeneous weights, though extending these guarantees to more general
graphs remains an open question.
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To implement Relaxed ReCom, we define a sampling distribution u” (Biased Spanning Tree
Distribution) over all possible school zonings. We then employ the down-up walk method from
Anari et al. (72) to sample the new cutting edge f at each step. This approach provides a mechanism
for sampling edges based on any given input distribution over graph partitions.

Biased Spanning Tree Distribution: Given a graph G = (U, E) and number of zones k, the school

zoning spanning tree distribution is defined by,

k
W0 (21, .. Zi) = | | T(Zi).ISchy| "5, Z; | | Shortage;| "Swress [FRL;] "=
i=1
where Z, U...UZ; =U is a zoning of U, T(Z;) is the number of spanning trees in G[Z;], Sch; is the

number of schools in zone i, |Z;| is the number of vertices in zone i, Shortage; is the proportional
shortage in zone i, FRL; is the proportion of students eligible for Free or Reduced Priced Lunch in
zone i, and Wscp, Wize, Wshortage» WFRL = 0 are predefined fixed weights for balance in the distri-
bution of number of schools per zone, size of each zone, shortage of different zones, and number
of students eligible for free or reduced priced lunch across zones, respectively.

If we set all weights w to zero, the biased spanning tree distribution reduces to the spanning
tree distribution. The term ]_[ll.‘=1 |Sch;| increases as the number of schools across zones becomes
more balanced, and similar behavior is observed for zone size, shortage, and FRL. Consequently,
the biased distribution assigns the highest probability to zones with equal numbers of schools, size,
shortage, and FRL. As wy;,. tends to infinity, the biased spanning tree distribution approximates
the balanced spanning tree distribution, effectively imposing a “soft” constraint on the balance of

zone sizes. Analogous arguments hold for the number of schools, shortage, and FRL in each zone.

4. Consumer Search

In this section, we present our approach to the Consumer Search component of our iterative
framework. We draw on ideas from consumer search and human-computer interaction to facilitate
decision-making about desired constraints and trade-offs that are achievable with zone maps. Our
goal is to provide stakeholders with sufficient support to comprehend and specify zone require-
ments, despite it being a computationally challenging, multi-objective, and multi-stakeholder prob-
lem. Our approach to the Consumer Search problem was used iteratively with our computational
methods to identify constraint sets and well-performing zone plans within those constraint sets for

SFUSD.
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The zone design problem is one of many applied optimization problems that face challenges
in human-computer interaction (HCI). Specifically, the complexity of the problem and computa-
tional intractability make it challenging to ensure that algorithm designers accurately translate the
human problem into a technical solution. Transparency in the model design process and effective
communication between stakeholders and engineers are crucial for developing better solutions and
preventing unintentional policy decisions (73, 74). While algorithms can improve decision-making
in data-rich environments, a hybrid approach incorporating both data-driven and socially-driven
factors is often more appropriate, particularly when the true problem requirements cannot be fully
captured within the algorithmic formulation (75, [76).

The multi-school zone design problem involves numerous stakeholders who are heavily invested
in the policy outcomes. One way to incorporate the preferences of these stakeholders is through par-
ticipatory design. This well-established concept in human-computer interaction literature empha-
sizes end-user involvement, enabling non-expert stakeholders to provide direct input on technology
design (77, 78, 79, 80, 81)). Participatory methods align with democratic ideals of public policy
decision-making (82, 83, 84), leading to increased open-mindedness and satisfaction (85), as well
as improved outcomes in healthcare (86). In addition to participatory design, we employ Participa-
tory Action Research (PAR), which engages stakeholders as co-inquirers in constructing research

plans and interventions (87, 88, 89, 90, 91)).

4.1. Consumer Search Framework.

While the framework presented in Section suggests a single Consumer Search process, our
close collaboration with the district revealed the need to engage human decision-makers before
every computational step. Thus the HCI component of our framework involves three main stages:
1) identifying metrics that align with stakeholders’ preferences, 2) forming a consideration set,
where stakeholders sequentially screen and search for feasible constraints, and 3) selecting the set of
constraints that best align with the district’s objectives from the consideration set. Figure E] provides
a detailed illustration of our framework.

In the metric elicitation stage, we use methods from participatory design to engage with a vari-
ety of stakeholders to understand the metrics to use in constraints to best capture their needs and

preferences. H SFUSD staff organized several focus groups across diverse groups of stakeholders

24 Qur starting point was the metrics and sets of constraints used to develop the 2020 Board policy, and a set of well-performing zone
maps developed to support that policy (92).
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Figure 4: A detailed framework for participatory school zone design, consisting of metric elicita-
tion, consideration set formation, and constraint selection, with stakeholder engagement throughout

the process.

to gather feedback to refine our metrics, introduce new constraints, and adjust existing ones. We
also developed an interactive sensemaking tool that allowed participants to interact dynamically
with zone maps. This tool supports a human-centered approach to metric elicitation by providing
an interactive visualization tool that makes abstract metrics concrete through maps and visuals.

In the consideration set formation stage, stakeholders sequentially submit queries to the com-
putation tool to determine whether different sets of constraints are feasible. This allows the stake-
holders to build a Pareto frontier of constraint sets that are achievable via different zone maps.
This process is necessary because the search space often exceeds stakeholders’ ability to effectively
determine their optimal trade-off between constraint thresholds. The a priori formation of a consid-
eration set mirrors the type of consumer behavior described in the consider-then-choose literature
(93, 94, 95, 96, 97).

Once the consideration set is formed, stakeholders proceed to the selection stage, where take-
holders analyze zone maps near the Pareto frontier of constraint sets using a dashboard, and take
into account additional information such as accessibility to public transportation. This tool allowed
them to choose the set of constraints within the consideration set that best align with the district’s

objectives.

4.2. Metric Elicitation and Participatory Design (PD)

Participatory Design (PD) offers a framework for creating a hybrid space where diverse stakeholders

can meaningfully contribute to the design process. We employed principles from PD to identify
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the constraints and metrics crucial for zone design, bridging the gap between stakeholders’ and
designers’ domains.

To implement this approach, SFUSD organized several focus groups, an effective method for
involving a broad range of stakeholders. These groups included participants from various organi-
zations and stakeholder segments. The focus groups aim to gather feedback on the metrics to be
balanced, introduce new constraints, and adjust the format of existing constraints.

In response to feedback from focus groups, we developed an interactive web-based tool that
serves as a sensemaking object by providing a dynamic platform for engaging with the zone design
problem. This Sensemaking tool addresses the limitations of static maps by allowing participants
to draw their own solutions, expand the consideration set, and alleviate concerns about predeter-
mined zone decisions. Its interactive nature facilitates the elicitation of tacit knowledge from domain
experts, as they can identify and attempt to resolve non-viable aspects of the map using their con-
textual knowledge. The Sensemaking tool features a user-friendly interface that includes a map of
San Francisco’s census block groups, a live table displaying zone demographics, tools for modify-
ing zone boundaries, and checkboxes for selecting map overlays. Users can interact with the map
by selecting regions and assigning them to different zones, with the demographic table updating in
real-time to provide instant feedback on the diversity and school options within each zone (Figure B).
The tool also offers optional map overlays, such as public transportation routes, school locations,
community-based organizations, and district boundaries, to provide additional geographical context
for informed decision—makingE

The interactive zone design tool is designed for a broad user base, including focus group partic-
ipants and district staff. Researchers and district staff can employ the tool in various settings, such

as interviews, focus groups, and surveys, to gather valuable stakeholder input.

4.3. Forming the Consideration Set

In the school zoning problem, each constraint aims to balance certain metrics, such as the number
of seats and students, across zones. The constraints allow a certain amount of deviation from the

optimal balance, and the thresholds of maximum allowable deviations can be adjusted to form

25 Individual focus groups were held with the SFUSD Educational Placement Center (EPC), the San Francisco Municipal Tran-
sit Agency (SFMTA), the San Francisco Department of Children, Youth, and their Families (DCYF), SFUSD’s Superintendent’s
Executive Cabinet, parent leaders, and former SFUSD Student Assignment staff.

26 The tool uses data on Kindergarten students from multiple years, aggregated at the census block group level, including student
demographics, school locations, community-based organizations, local transit lines, and supervisorial districts.
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Zone Design Tool

Modify the map below to design your own zones.
Zone Demographics

Red Purple Green Blue Cardinal
Zone Zone Zone Zone Zone
AT & 13 11 14 12 11 11

Schools
% Asian 27% 38% 18% 17% 26% 31%
% Black 7% 3% 2% 11% 6% 3%
% Latinx 38% 20% 31% 35% 17% 17%
% White 10% 15% 27% 16% 24% 24%

% FRL 60% 45% 41% 60% 52% 41%

Map Overlays

[JJ Muni Routes

) Elementary Attendance Area Schools
[0} Elementary Citywide Schools

[Z) Middle Schools

[ Community Based Organizations

[Z) Supervisor Zones

Add Current Selection to:

| Clear Selection H Reset Map H Start Drag Select |

Figure 5: Interactive, web-based zone design tool’s user interface.

different sets of constraints. We refer to each set of constraints and their respective thresholds (e.g.,
maximum allowed shortage of 20%, maximum allowed socio-economic deviation from the average
of 15%) as a position, a term borrowed from the consumer search literature (@). Exploring various
positions is crucial, as tightening some constraints may require relaxing others.

We are interested in feasible positions that are Pareto optimal, meaning no other feasible posi-
tions exist where all individual constraint thresholds are more restrictive, with at least one strictly
more restrictive.ﬁ In other words, no Pareto improvement can be made without compromising the
feasibility of the zoning solution.

To help stakeholders understand the range of possible zoning solutions, we consider the full range
of valid options and guide them towards preferred areas of the solution space. We offer suggestions
on which constraints to relax or tighten, learning the district’s preferred trade-offs among design
objectives. This approach parallels consumer behavior in navigating product spaces (, @ ),

where users continuously update their beliefs about product attributes during the search process

27 Feasibility is determined by the zone generation algorithm. We use the Multilevel Optimization algorithm to generate our zones
in this process. In result section , we compare the multilevel optimization with other zone generation algorithms.

28 When searching for zones satisfying a set of constraints, the resulting zones often have balance deviations at the threshold val-
ues, as the optimization model’s objective is set to maximize compactness. Consequently, we use the terms constraints and their
corresponding zones interchangeably when discussing balance.
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Figure 6: Stakeholders search process.

(). We focus on determining the most lenient and most restrictive thresholds for each constraint
based on stakeholder input and a multi-dimensional binary search, while still allowing for feasible
zoning solutions.

Approach 1: Sequential Process Due to the large number of feasible positions, our stakeholders
use a sequential screening process to build a consideration set. We begin with a set of constraints that
yields a feasible solution and gradually tighten the thresholds on some constraints to achieve Pareto-
improving zones until we reach an infeasible position. Upon reaching such a position, we have
approximately identified a Pareto-improving zone, which is added to the stakeholder’s consideration
set.

Stakeholders decide whether to stop the screening and finalize their consideration set or to screen
another position by querying the existence of a zoning solution for a new position. For each new
query, we must relax at least one constraint to obtain a feasible solution. Through discussions with
stakeholders, they decide which constraints they are willing to loosen at that position, based on the
district’s objectives, such as balancing socio-economic status or shortage within zones.

Figure E illustrates the iterative process of constraint discovery and our interactions with stake-
holders. Although the figure only depicts a 2D map focusing on socio-economic balance and short-

age, in practice, we consider multiple metrics, including racial distribution (e.g., the proportion of
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racial minorities in each zone)E and the inclusion or exclusion of K-8 schools in the zone design. We
also received feedback on new constraints, such as ensuring zones do not cross geographic barriers
such as parks, mountains, and highways.

In our regular meetings with stakeholders to identify their consideration set, we begin by pre-
senting a carefully selected set of positions that can be effectively evaluated and discussed within
the available time and mental capacity of the group. At each step of modifying the constraints, we
generate a range of options for potential directions to explore, with some paths leading to infeasible
solutions and terminating. Figure E shows the trajectory of a single request. In practice, we run
many requests in parallel, with each request branching into new directions at each step. We repeat
this process for various zone sizes to understand the trade-offs and implications of different zone
configurations.

Approach 2: Automatic Tool Using Large Language Models. To streamline the constraint explo-
ration process and empower stakeholders to independently investigate the solution space and build
their consideration set, we developed an interactive user interface (Ul) tool. This web-based appli-
cation allows stakeholders to directly manipulate constraint parameters or request additional con-
straints with the help of language models and observe the resulting zoning solutions in real-time.
This significantly accelerating the iteration cycle by removing the researcher from the loop ([74) and

enabling stakeholders to search the feasible positions autonomously.

4.4. Constraint Selection Dashboard and Participatory Action Research (PAR)

Following the formation of the consideration set, we employed principles from Participatory Action
Research (PAR) to guide stakeholder-driven constraint selection. PAR, a collaborative approach
that positions stakeholders as co-researchers, was employed to collectively conduct analyses and
interpret outcomes (81, 102). To support this process, we developed an interactive dashboard that
enabled district staff to explore optimization-generated solutions and narrow down the consideration
set from over 200 to approximately 25 zones. (Figure )

The dashboard consists of three selection stages, each targeting one of the district’s goals: pre-
dictability, proximity, and diversity. Users navigate through tabs representing each stage. Figure
illustrates the diversity selection stage, where users can specify the maximum percentage of free or
reduced-price lunch-eligible students within each zone and the maximum percentage of a single eth-

nic group relative to the entire zone population. Additional metrics capturing zone demographics are

29 This raises questions about which racial groups should be balanced and what level of deviation from the district average is accept-
able for each group. In SFUSD, African American, Latinx, Pacific Islander students have been identified as racial minorities.
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provided for context, and users can input their favorite zones and comments for later reference. The
final tab offers an in-depth investigation of the user’s favorite maps. The extensive dashboard, shown
in Figure , includes all metrics requested by stakeholders during the design process (Appendix
@). Users can view map visualizations and a large number of metrics describing the schools and

students within each zone boundary, enabling them to make informed decisions.

5. Results

We applied our framework to generate zones and identify promising candidate maps for the San
Francisco Unified School District (SFUSD). It is important to note that the selection process
described is part of an ongoing zone boundary selection process and does not constitute finalized

policy decisions.

5.1. Data

Each year, around 3,000-5,000 kindergarten applicants participate in the SFUSD student assign-
ment process.@ They apply to programs at the 72 elementary schools in SFUSD, including 9 K-8
programs. The K-8 program are ‘citywide’ in the zone-based policy, meaning that all students can
apply to these programs irrespective of their zone of residence.

For the zone design problem, we use the following data for kindergarten applicants from the
2014-2015 school year through the 2023-24 school year: each student’s home location (latitude and
longitude), race, special education status, English language learner status, and submitted rank-order
lists over SFUSD programs. Additionally, we use the 2019 free and reduced price meal eligibility
rate of each census block, averaged over all grades and students within a block, as an anonymized
measure of socio-economic status. We also take into account the location of schools, the capacities
of each programs and school-level test scores. The student and school data are then aggregated to
the block, block group, and attendance area levels to characterize the geographic building blocks
of zones.

Computational Resources: All runs were performed on a 2.6 GHz 6-Core Intel Core 17 with
16GB of RAM. The code was implemented in Python, with the Mixed Integer Programs written
using Gurobi and the Constraint Programming approach formulated in the CP SAT-solver. Basic

30 Student participation patterns have changed post-pandemic, with a drop in numbers and higher year-to-year variations compared
to the pre-pandemic level of 5,000.
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model reductions were applied to reduce the number of variables and constraints when possibleE.

Optimizing directly at the block level involves 23,847 variables and 116,645 constraintsE

5.2. Consumer Search Results

We begin with the results of the Consumer Search process. Figure B gives a partial view of the
consideration set created by a group of stakeholders. The consideration set was obtained via the
Consumer Search process, and includes a Pareto frontier of positions for zones of varying sizes
(enabling 6, 10, or 18 zones in the district). Figure a illustrates the trade-offs between zone size,
FRL balance, and shortage enabled by these positions. For example, to find a 6-zone solution with
better FRL balance, higher shortage across zones is required. As expected, larger zones allow for
better balance of shortage and FRL across zones. Although the figure only depicts the trade-offs
between FRL balance and shortage for each zone size, in reality, there are many zone sizes, and

many other metrics to balance. The finalized consideration set included 260 positions.

31 For example, if the distance between a geographical unit and a centroid is very large, we can be certain that the unit will never be
matched to the zone corresponding to that centroid, and thus, we do not define a decision variable for that pair.

32 The computational capacity allowed for solving the direct zoning problem for approximately 5 zones and 800 units, which repre-
sented about 1/12th of the entire district.
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Given the consideration set, district staff experimented with the generated solutions using the
Constraint Selection dashboard described in Section @ They used a scoring methodE to choose
a set of candidate zones from the consideration set. Filtering proceeded in 2 stages. First, a staff
member performed a visual review of all maps, eliminating candidates that had impractical com-
pactness failures, or zoning maps divided by highways or natural obstacles (e.g., city parks/hills).
Next, maps not in the top quartile total score, or maps that were not in the top half of the diversity
score, proximity score, or predictability score individually were eliminated B The results of the

constraint selection process are shown in Appendix table .

5.3. Zone Generation Algorithm Comparison

After identifying a smaller set of balance constraints through the constraint selection process, we
evaluate the performance of the zones generated by each of our algorithms for each of these con-
straints. We compare the solutions obtained when solving the optimization problem directly on
attendance areas with those generated using the multilevel approach. Additionally, we compare
these results to the Relaxed Recom approach.

In Figure @, different algorithms are represented by distinct colors. The multilevel optimization
consistently achieves better solutions compared to the other approaches. Figure E shows the zones
generated by these methods, demonstrating that the multilevel approach not only results in better
statistics but also provides more compact zones. Figure E also shows the variations of shortage
and FRL metrics across zones. The Relaxed Recom approach does not perform as well as the
optimization-based methods. However, this is not entirely unexpected, given that these algorithms

are not designed to find a single optimized solution.

5.3.1. Results on MCMC Approaches Figure E illustrates the results of applying Relaxed
ReCom for 25,000 steps while attempting to balance all the relevant constraints, trying to divide the
city into 6 zones. The generated solutions fail to achieve a satisfactory balance across all the desired
criteria at the same time. For example, a solution that perfectly balances the number of students
and population of low socio-economic status might have an uneven distribution of schools across

zonesE

3 The scoring and filtering process relied on 10 working definitions: 5 diversity goals, 3 proximity goals, and 2 predictability goals.
34 Details of this process are provided in Appendix E

35 Our constraint ensured that the maximum shortage over all zones was within certain thresholds, but it does not provide insight
into the distribution of this metric across zones.

36 The zones are of drastically different sizes (e.g., the yellow and green zones have significantly different areas), and some zones, like
the red zone, are overly stretched and almost comprised of two large compact areas that are far away from each other but connected
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Figure 8: Comparing different zone generation methods.

Given the importance of satisfying all constraints in the school zoning context, even a failure
in balancing one of them renders the entire solution inadequate for practical use. The challenges
encountered by the Relaxed ReCom approach in this setting can be attributed to several factors. The
large number of constraints involved in the school zoning problem creates a high-dimensional search
space, making it harder for the algorithm to find a solution that balances among all the criteria.
The various balance constraints in the school zoning problem often represent competing objectives.
Improving balance along one dimension may require compromising another. The Relaxed ReCom
approach struggles to navigate these trade-offs effectively, as it aims to satisfy all constraints simul-
taneously through the biased spanning tree distribution weights. The performance of the Relaxed
ReCom approach is very sensitive to the choice of weights assigned to each constraint in the biased

through a narrow path. There are also similar imbalances in the statistics for these zones in terms of the number of schools and the
shortage in each zone, which are further provided in Appendix
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(a) Solving Optimization (b) Multilevel Zone (c) MCMC Method Solu-

Directly on Attendance Design Solution tion

Figure 9: Comparison of 6-zone solutions generated using different methods. The top row shows
the zone boundaries, the middle row illustrates the socio-economic balance (percentage of students
eligible for free or reduced-price lunch) across zones, and the bottom row depicts the capacity
shortage in each zone. In the shortage maps, brighter red indicates higher shortage, while blue

represents a seat surplus.

spanning tree distribution. Finding the right set of weights that leads to a well-balanced solution
across all dimensions is a non-trivial task and may require extensive tuning and experimentation.
Figure |1( demonstrates that Relaxed ReCom performs relatively well when dealing with a small
number of constraints and focusing solely on balancing zone sizesﬂ However, the presence of
elongated regions, such as in the orange zone, suggests that even with simplified constraints, the
MCMC approach may not be the most effective for achieving highly compact and well-structured

zones compared to optimization methods.

37 Setting Wshortage =WSch =WFRL = 0
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ReCom for School Zoning The original ReCom algorithm cre-
ates partitions that balance population within a permitted toler-

ance. For school zoning, we extend this approach to satisfy mul-

tiple balance constraints within predefined thresholds. However,
Figure 10: Enforcing only span-

the restrictive nature of these constraints significantly reduces the ning tros balance constraints, using
number of feasible cuts at each step. This limitation often leads .1, cd ReCom

the algorithm to quickly exhaust valid moves, resulting in local

optima traps.

Simulated Annealing. To address the challenges faced by Relaxed ReCom, we applied simulated
annealing to our problem. Starting with power weights of 0 in the biased spanning tree distribu-
tion, we sampled for 5,000 steps, then gradually increased the weights to their final values over
10,000 steps, and maintained the final weights for an additional 5,000 steps before taking a sample.

However, the solutions obtained showed only marginal improvements in balancing metrics across

Z0nes.

5.4. Redrawing Attendance Area Boundaries, and Drawbacks of Multilevel Approach

As part of the school zoning project, SFUSD explored the idea of creating 59 zones, each containing
a single school. This concept of neighborhood zones resembles redrawing attendance boundaries,
where students are assigned to schools within their designated zones. The objective was to design
self-contained zones with adequate capacity to serve the students residing within them while ensur-
ing a balanced student distribution across all zones. To accomplish this, it was necessary to solve
the optimization problem directly at the block levelE

We employed the recursive approach in to solve the problem at the block level. The new
neighborhood zones (known as ‘attendance area zones’) can be seen in Figure . The multilevel
approach described in was unsuitable for creating 59 zones, since initializing the process with
a zoning solution from either the attendance area or block group level often led to getting stuck at

local optimaE

38 The block groups’ relative size compared to the desired smaller 59 zones is quite large, restricting the optimization model’s ability
to find an optimal block group arrangement that satisfies the balance and compactness constraints.

39 The optimization model struggled to find a well-balanced and compact zoning solution due to the limited flexibility in adjusting
zone boundaries at the lower levels of the hierarchy.
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Figure 11: Comparison of the newly generated 59 attendance areas (bottom row) and the historical
attendance areas (top row). The left column shows the zone boundaries for each solution. The middle
column illustrates the socio-economic balance, depicting the percentage of students eligible for free
or reduced-price lunch in each zone. The right column presents the capacity shortage in each zone,

with brighter red indicating higher shortage and blue representing a seat surplus.

5.5. Evaluation of Selected Zones

We evaluate the performance of the selected candidate zone maps using an assignment simulation
engine, which simulates student preferences over programs within a zone using a multinomial logit
utility model trained on historical choice data (@). For the 6, 7, 10, 13, and 18 zone solutions
(Appendix Figure ), we use the same priority and reserve structure from our companion paper on
the policy decision, including sibling and equity priorities, as well as reserves based on a composite
diversity measure(). We also restrict students’ choices to schools within their assigned zones. For
the new attendance areas (59 zones), we run the current policy as a benchmark comparison. The
details of this policy can be found in ().

The resulting assignments are evaluated based on the district’s policy priorities of diversity, prox-
imity, and choice metrics to assess the disruption to current choice patterns. Table [If shows the
post-assignment metrics for each zoning solution. We compare the selected assignments to a Status

Quo policy, which uses the assignment algorithm that was in place in 2023-24 with student pref-
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erences given by the estimated choice model. Diversity measurements include the percentage of
mid-to-high poverty schools (+15% FRL Schools) and the percentage of historically underserved
ethnic groups (African American, Latinx, or Pacific Islander) in these schools (AALPI in +15%
FRL), motivated by literature suggesting the intersection of these groups in high poverty schools is
particularly harmful (103). For proximity, we measure students’ average distance to their assigned
school (Avg Distance (miles)), and percentages of students assigned within a ‘walking distance’ of
0.5 miles (Distance < 0.5 miles). Choice metrics include the percentage of students receiving one
of their top 3 choices (Rank Top 3).

Proximity: All the selected zoning solutions improve the average distance to assigned schools
compared to the Status Quo. However, only the 18-zone policy significantly increases the percentage
of students assigned to a school within 0.5 miles. Smaller zones generally perform better than larger
zones in terms of proximity metrics.

Diversity: Larger zones perform better than smaller zones with respect to diversity. The 6-
Zones+Reserves and 7-Zones+Reserves policies are the only ones that decrease both the number of
high-poverty schools and the percentage of historically underserved ethnic groups in these schools
compared to the Status Quo. Smaller zones perform significantly worse on diversity metrics.

Choice: All zone-based policies restrict choice compared to the current policy, as they limit stu-
dents’ options to schools within their designated zones, which may not include their most preferred
programs. However, larger zones allow families to access their preferred school options better than
the original attendance area zones.

Updated Attendance Areas: The newly proposed attendance area boundaries (59 zones) show
marginal improvements across all metrics compared to the Status Quo, with better performance on

proximity and diversity while maintaining the same choice metrics.

6. Conclusion

Designing multi-school zones for student assignment presents significant challenges on both com-
putational and human dimensions. Drawing from the school neighborhood design and political dis-
tricting literature, we propose a heuristic optimization approach to generate zones for the San Fran-
cisco Unified School District. Inspired by the human-computer interaction literature, we develop
tools to help learn optimization specifications and support the decision-making process.

Zones pose a considerable design challenge due to the difficulty in conceptualizing their impact,

the potential for politically charged design processes, and the computational complexity involved in
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6-Zones + 7-Zones + 10-Zones + 13-Zones + 18-Zones + Updated Status-

Reserves Reserves  Reserves Reserves Reserves Attendance Areas Quo

Proximity Avg Distance (miles) 1.30 1.29 1.23 1.21 1.21 1.30 1.31
Distance < 0.5 miles 31.7% 33.9% 35.5% 35.5% 36.4% 36% 35.6%

Diversity +15% FRL Schools 11.2 13.1 14.9 14.6 15.1 12 12.4
AALPI in +15% FRL 14.9% 17.1% 21% 21.5% 23.8% 17.9% 18.6%
Choice  Rank Top 3 81.3% 81.1% 80.2% 77.2% 75.5% 88.0% 88.0%

Table 1: Average assignment metrics using preferences generated by choice model for counterfac-

tual policies, and the student match of our simulation of the 2023-24 policy.

their development. Despite these challenges, our preliminary simulation results suggest that well-

designed zones offer a promising avenue for improving school diversity and student outcomes.

To reach a final community-supported decision, substantial collaboration between researchers

and stakeholders is necessary. By leveraging computational techniques and engaging in participa-

tory design processes, we can work towards developing zone-based assignment policies that pro-

mote equity and enhance educational opportunities for all students in the San Francisco Unified

School District.
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7. Computational Methods
7.1. Arbitrary Centroids

In this subsection, we provide an integer program in which centroids are not predefined any-
more, but instead centroids are variables that could be any unit, while satisfying all the other bal-
ance/contiguity/etc constraints. This will allow our integer program to find a larger class of solu-
tions, and maybe find zonings with given constraints in which we previously deemed to restraining
to have any solution for. Unfortunately this integer program has substantially more variables, which
makes it intractable to solve.

Let y, be a binary decision variable indicating whether unit z is the centroid of a zone or not,
Vz € S. Let x,, ; be the decision variable indicating whether unit « is part of a zone with unit z as its
centroid-unit or not, Yu, z € U. In this new integer program, we enforce all the previously introduced
constraints, but anywhere among constraints [l - @ where we had the term “z € Z* we now replace

it with “z € U”. We additionally enforce the following constraints.

D y:=1z| (12)

zeU

Constraint |2 makes sure we have exactly |Z| centroids.

Xuz<y; Vu,zeU (13)

Constraint || 3 makes sure we only assign a unit u to a zone with centroid z if unit z is considered as

a centroid.

7.2. Combining Zone Optimization with Choice

In order to combine zone optimization and choice into a single, tractable math program, we use a

priority optimization formulation similar to Shi (]104).
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Let S be the set of schools, and let T be the set of student types, where students of type t € T
have utilities drawn from distribution F;. Let n,, be the number of students in unit u of type ¢
VueU,t €T, and let Util;(S') :=Es.F, [max,es f,] be the expected utility of a type ¢ student with
budget set §* C S. We further define P;(s,S’) := 1{s € S’}Ps.F, (fs =maxycy fy) is the probability
a student of type #’s favorite school in S is s. Let variable y; , s be the probability that a student of

type ¢ living in unit « has budget set §"’.

max > Uil (S)yrus (14)
Y u,t,S’
.t Vius =0 YueU¢eT,§'cS  (15)
(Capacity) > mu/Pi(s,8)yius <cs  VueU¢teT,seS  (16)
tu,S’
(Valid probabilities) Z Vius =1 YueU,teT (17)

§'cs

7.3. Combining zone optimization and priority optimization and choice.

Suppose we want to combine zones with priority optimization and choice by directly using the
above math programs. Then we need to introduce additional constraints on valid probabilities y; , 5.

Specifically, we need to ensure that a student’s budget set is contained in their zone, i.e.
Yeus > 0only if S” C {schools in u’s zone}.

A school s is in student u’s zone if and only if >} ., x, .x, . = 1, and otherwise ;.7 xs . x, . =0.

So we can ensure each students’ budget set is contained in their zone using the quadratic constraints

Vius S ) Xooxu: VE€T,S'CS,s€S. (18)

z€Z

Making the quadratic constraints linear. In this subsection, we provide an alternative formula-
tion of the zone optimization program that increases the number of variables and constraints (by a
factor of |Z|/|S|) but allows us to characterize valid probabilities using a linear constraint. Let x,,
be a decision variable indicating whether unit « is part of the same zone as school s, defined for all

ucU,seS. We write the following optimization program.
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min Y nF(S Vs + Y buy (19)
u,t,S’ uelU, veN (u)
s.t. [Xus = Xps] £2 = (Xyg +Xp5) Yv,ueU,s,s' €S (20)
Vs < Xus YueU,teT,SCS,seS (21
Yius >0 VueU,teT,S' CS (22)
Z Ny Pr(8,8)yius < ¢ YueU,teT,seS (23)
tu,S’
Z Vi =1 VueU,teT. (24)
S’cS
X < > x VueU,seS (25)
viveN (u),dy s<dy.s
0.15- Z MuXus > | Z (M = @) Xus] VsesS (26)
uelU ueU
sch
1> Z “_ Z schyxus| VseS Q27)
uelU |Z| uelU
F
Z fuxus > (=—=0.15) - Z MuXus VseS (28)
N
uelU uelU
Rk
Z Rixys > (=—=0.15) - Z X - VseS, kek (29)
uel N uel

Note that this program is almost identical to combining the previous two math programs and
replacing all instances of x,, ; with x, ;. There are a few notable differences, which are as follows.
In the objective, we have replaced the compactness objective with a choice objective (total utility).
Constraint @ is the zone constraint. It ensures that if two units u, v are in the same zone as some
school s/, then the set of schools in u’s zone is the same as the set of schools in v’s zone (i.e.
Xus = Xy.5). Otherwise, the units do not share any schools. Constraint 21| is the constraint for valid
probabilities. It ensures that a student’s budget set is contained in their zone. Constraints 22 - @
are as in the math program [14 in subsection @, and all other constraints @—@ are as in the math

program in subsection , with x,, ; replaced with x,, ; for all s € S rather than for all z € Z.
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Figure 12: Visualizing the Limitations of the Contiguity Constraint in @

7.4. Contiguity Constraint

Figure [1 2 illustrates a case where () may fail: unit a does not have any neighbors closer to centroid
z than itself. To address this issue, we enforce constraint () only for units # and zones z where u

has at least one neighbor closer to z.

7.5. Local Search

Starting with the solution obtained from the multilevel process , we apply the Local Search
algorithm to further improve the zoning results. The local search process is repeated for a maximum
of 5000 iterations or until convergence is reached (whichever occurs first). It is important to note
that the Local Search algorithm is designed to operate at the census block level for the geographical
units. This is possible because at each iteration, the algorithm only needs to solve a bipartition

problem on a subset of the district.

Algorithm 4 Local Search

Input: Current school zoning, P. Let P(u) be the zone for unit u in zoning P.
Output: New school zoning, Q.
— Randomly select two adjacent zones Z; and Z; in P.
— Merge zones Z; and Z; to create a single partition U.
— Split the partition U into two zones, Z; and Z».
Z1 ifuezy
— Define Q(u) =% 7, ifue,

P(u) otherwise
Return Q
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(a) Dividing the map into two (b) Divide partition (A) into four
parts, (A, B) new sub-partitions (A, Az, A3Ay)

T

(c) Divide partition (B) into
four new sub-partitions (Bj, B>, (d) Divide partition (Bj) into 8

B3, By) new sub-partitions

Figure 13: Iterations of the Divide and Conquer process

7.6. Divide-and-Conquer Zoning

We present a recursive algorithm that divides the district into non-overlapping subsections and
solves each subproblem separately. The algorithm steps are: (I) Divide the district into two bal-
anced partitions, A and B, minimizing the shortage of school seats and boundary length (Figure
). (IT) Further divide each partition into four sub-partitions (A1, Az, A3, A4 and By, B>, B3, By;
Figures and ), ensuring an equal number of schools per zones, balanced shortage, and min-
imal boundaries for compactness. (III) Divide each sub-partition (A; or B;) into roughly 8 ZOHGSE,
prioritizing zone balance and compactness. (IV) Perform post-processing to improve boundaries.
One limitation of the Divide and Conquer approach is that the zone corners or edges become fixed

due to previous partitioning steps when sub-partitions (A; or B;) are divided into smaller zones. This

40 We experimented with different splitting patterns (e.g., 2/4/8, 4/2/8) but focused on the 2/4/8 split for illustration.
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restricts flexibility in adjusting zone boundaries and limits solution space variation (Figure ).
As aresult, this approach struggles to achieve a good balance across zones in terms of shortage and
socio-economic diversity. Solutions obtained using Divide and Conquer have significantly worse
balance compared to the Overlapping Recursive Zoning introduced in section H

A solution that appears compact and well-balanced when dividing the district into two partitions
may not be optimal when further subdividing partitions into smaller zones. Initial partitioning deci-
sions significantly impact the quality of the final zoning solution. Ideally, a large number of zones
should have a circular or compact shape to minimize total boundary length and promote neighbor-
hood cohesion. However, the initial two-partition division may introduce sharp corners or elongated
shapes that are not optimal for the final zoning configuration, limiting the ability to achieve desired

compactness in subsequent steps.

7.7. Jointly Optimizing Resource Allocation and Zone Design

In this section, we propose a solution to optimize the allocation of educational programs across
schools in San Francisco while maintaining the total number of program offerings. The current fixed
locations of schools pose a challenge, as the existing distribution of schools and their capacities
may not optimally serve the student population. Altering these locations would be prohibitively
expensive due to the high costs associated with closing and opening schools. However, while the
physical school locations cannot be easily changed, we suggest that modifying the allocation of
classrooms within each school can better meet the needs of students.

In SFUSD, kindergarten students apply to 30 special education programs (8 different types) that
are crucial for supporting students with disabilities. In the 2019-20 academic year, over 3,400 chil-
dren in grades K-5 were enrolled in these programs, with 78% identified for Speech or Language
Impairment, Specific Learning Disability, Autism, and Other Health Impairment. Due to the wide
variety and limited availability of special education programs, the proposed zoning system allows
students to be eligible for all such programs district-wide, while restricting their eligibility for GE
programs to their assigned zone.

Despite the importance of these programs, several equity gaps exist. Students enrolling in special
education programs are more likely to come from marginalized communities. Suboptimal program

placement has led to increased travel times and transportation costs for students, and enrollment

41Zones may have a shortage of up to 45%, much higher than the 28% shortage achieved by solutions in section .
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patterns reveal disparities in access to different Special Education programs based on disability type
and race.

SFUSD is obligated to provide transportation for students enrolling in special education programs
due to their specific needs and the limited number of programs available across the district. The cost
of busing for special education is substantial, amounting to $26 million per year, primarily because
students do not always live close to the schools offering the programs they require. However, the
demand for special education programs is not entirely unpredictable, as specific neighborhoods
have historically shown consistent demand for particular programs over time.

Proposed Solution. To address these challenges, we propose reallocating programs across
schools while maintaining the total number of offerings for each program. By offering programs at
schools located close to areas with high demand, we aim to reduce transportation costs. The new
problem simultaneously tackles two goals:

* Find a relocation of special education programs that minimizes the total cost of transportation

for students enrolling in these programs.

* Divide the district into a specified number of zones, limiting general education (GE) students’

choices to schools within their assigned zone.

Incorporating post-choice outcomes, such as transportation costs for special education students,
directly into the objective function is not feasible (as shown in Appendix ). Instead, we model
the problem as a centralized system that assigns students to special education programs while min-
imizing total transportation cost. This heuristic provides a good estimate of transportation costs,
guiding the effective relocation of programs.

We aim to develop a single optimization model that addresses both Goal 1 (relocating classes)
and Goal 2 (finding the best zoning). A combined approach can lead to better solutions that might
be missed in a two-step optimization heuristic. By simultaneously relocating programs and finding
the best assignment of students to schools for special education, we can achieve a better results.

Let T be the set of special education programs, including Mild/Moderate Autism Focus (AF),
Emotionally Disturbed (ED), Spanish Immersion (SE), etc. Let Distance,, s be the transit distance
between unit u and school s. Let Population/, be the number of students in unit « that would like
enroll in program . Let A | be a binary variable indicating whether students of Population;, are
assigned to school s. To generate zones for GE students while optimizing the transit distance for

students assigned to special education programs, we modify the mixed integer program from sub-

section .
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Objsped = Z Z Z Distance,, - Population), - A},
teT uelU se§

Objective The objective function computes the total transit distance of each special education
program student to their matched school, which will be combined with the previous objective value
@ for generating zones for GE students. This way we simultaneously optimize the transit distance
of students assigned to relocated special education programs classes while finding compact zones

for GE students.

D AL=1  VieTueU (30)

SES

Assignment Feasibility Constraint @ ensures that students of all special education programs,
from all neighborhoods, are assigned to a school that offers that program.

In San Francisco, each school can have a maximum of only one class for each special education
program. This ensures that the limited number of classes for each program is distributed across
different schools rather than concentrated in a single school. In contrast, schools are allowed to have
multiple classrooms for general education (GE). To model this specific criteria, we introduce the
decision variable ¢‘, which indicates whether school s has a class for students of program 7. Let
Capacity’ be the capacity of a classroom for program ¢ € T, considering the required equipment and

the number of students a teacher can handle for each specialty need.

Z Population!, - A’ | < Capacity’.q,  VteT,s€S

ns S
uel

Assignment Capacity This constraint ensures that for each school s, there are enough seats for
all the students with each special education type matched to school s.

Modeling the classrooms for GE is slightly more complex since schools can have multiple GE
classrooms. We introduce a separate variable for each GE class in each school. Let y“;gz be a binary
variable indicating whether the ith classroom of school s is offering GE program, and is part of
zone z. Let Rooms, be the number of classrooms in school s.

i+1

yf;,z >y, Vs €S,z € Z,i<Rooms; (€2))
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School Classroom Unification Constraint B1| ensures that the GE classes in each school are
assigned to only one zone, preventing the optimization model from assigning different GE class-

rooms of a single school to separate zones.

Xoz 2y, VseS,zeZ (32)

Zone Alignment Constraint @ ensures that classes of school s are assigned to zone z only if the
area unit in which school s is located is also assigned to the same zone. In the zone optimization
model in subsection @, we assigned each unit to a zone using decision variables x,, ;. Now, our
GE classrooms within a school must follow the same logic: a school with its GE classes can be
assigned to a zone only if that unit area is assigned to that zone. It is sufficient to form the inequality
constraint for y}’z, given the constraint in .

Note: The introduction of the variables y’;,z might seem unnecessarily complicated, but they are
crucial for finding the zoning solution simultaneously using a linear model. If we were to use a
simpler variable g%% to represent the number of GE classes in a school s, similar to the approach
used for special education classes, we would encounter a quadratic constraint when computing the
shortage of each zone. This constraint would limit the value of Y,y X...(¢%E — PopulationuGE ),
which is a product of two decision variables. Quadratic constraints are much more computation-

ally expensive to solve, even though the model would have fewer variables compared to our linear

formulation using y' ..

Rooms; = Z q.+ Z Z yi’z VseS (33)

teT z€Z 1

Unchanging Classroom Quota Constraint @ ensures that the total number of classes in each
school remains the same, as the physical limits on the number of rooms in the building prevent
increasing or decreasing the total number of classes within a school.

Let Classes’ be the total number of classes offered for program ¢ across the district.

Classes’ = Z q. VteT (34)

ses

Unchanging Special Education Quota Constraint @ ensures that the total number of classes for
each special education program remains constant across the district. At this phase of the work, we

do not want to increase or decrease the overall number of programs offered in the district.
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0.15- Z xu,Z.Populationl?E > | Z PopulationfE — Capacity“E. Z Z yi’zl VzeZ

uelU uelU zeZ 1

Shortage To generate zones for GE students while optimizing the transit distance for students
enrolling in special education programs, we modify the mixed integer program from subsection .
All constraints remain the same as in subsection , with the exception of the shortage constraint
B, which is redefined as follows. Constraint @ ensures that for each zone z, there are enough seats
for GE students assigned to zone z among all the GE classes assigned to that zone:

Finally, we have the following constraints on the decision variables:
Viqh AL, €{0,1}  VYueU,z€Z seS,i<Rooms,

By incorporating these constraints and objectives into a single optimization model, we can effec-
tively reallocate special education programs across schools in San Francisco while simultaneously
drawing optimal zones for general education students. This approach aims to reduce transportation
costs for special education programs and improve the overall efficiency of the school system.

Results We analyze the change in the distribution of the Autism Focus (AF) program, based on
our optimization model.

Figure illustrates the current location of AF programs in the San Francisco Unified School
District. To optimize the distribution of these programs, we run our model with the objective of
reducing transit times for AF students while simultaneously reallocating school classes and drawing
zone boundaries to divide the district into 6 zones (used here as a sample example). The results of
this optimization are presented in Figure .

To further demonstrate the effectiveness of our approach, we analyze the distribution of students
who participated in AF programs from 2014-2023. The optimized locations of AF programs exhibit
a higher proximity to areas with a high concentration of AF participant students. Moreover, the new
AF program locations are not only closer to AF students but also better scattered throughout the dis-
trict, providing more even coverage. These improvements in proximity and distribution contribute
to reduced transit times for AF students, ultimately enhancing the accessibility and efficiency of the

special education program.
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(a) Location of Autism Focus (b) New Location of Autism (c) Distribution of Autistic
Programs in SF. Focus Programs in SF, along Focused students across SF
with new set of zones. from 2014-2023
Figure 14

8. Appendix: Results

8.1. Score-Based Filtering Approach

The scoring and filtering process relied on 10 working definitions: 5 diversity goals, 3 proximity

goals, and 2 predictability goals.

1.

o N4 A LD

10.

Diversity — Free or reduced price lunch dissimilarity

Diversity — Racial dissimilarity

Diversity — English language proficiency dissimilarity

Diversity — Special education dissimilarity

Diversity — Academic performance dissimilarity via level 1 (lowest) standardized test scores
Proximity — Average walk time to all schools in zone

Proximity — Percent of students within 20 minute walking distance of 2 or more schools
Proximity — Percent of students within 20 minute transit distance of 2 or more schools
Predictability — General education seat deficit

Predictability — Total seat deficit

Each working definition was folded into a total map score via a weighted average. Each diversity

objective was 10% of the total score (diversity giving 50% contribution), each proximity score

was worth 6.67% of the total score (proximity giving a 20% contribution), and each of the the

predictability goals was worth 15% of the total score (predictability contributing 30% of the score).

While effective at narrowing the field of candidate maps, the scoring and filtering method had sev-

eral shortcomings. First, it does not include a wide variety of stakeholders in the decision-making
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process and is not a participatory design approach. The method relies fairly heavily on the judgment
of a small group of stakeholders to determine reasonable metrics, weightings, and cutoffs, and to
an outsider, these decisions may seem arbitrary. Second, this filtering approach may not capture the
full breadth of potential solutions in its results. The score-based filtering stages implicitly impose
assumptions about the trade-offs between objectives; specifically, the method preserves solutions
in the middle part of the Pareto frontier of diversity, proximity, and predictability. For example, a
map that performs well on diversity and proximity might be eliminated for falling in the bottom half
of the predictability score. However, eliminating this map may only be a good idea if relative per-
formance is a good marker of viability. If an absolute threshold is a better marker, reasonable maps
could be eliminated — extending the previous example, if the map that performs well on diversity
and proximity fell into a predictability range that could be addressed by minor capacity planning
adjustments, stakeholders may prefer to keep this map in contention.

In response to these concerns, the future filtering process will likely differ markedly from this
scoring approach. Current work is underway to find a more participatory and balanced approach to

zone filtering.

8.2. Finalized Zones

(a) 6-Zones (b) 10-Zones (c) 13-Zones (d) 18-Zones

Figure 15: Optimized school assignment zones for 6, 10, 13, and 18 zones in San Francisco.

8.3. Interactive Selection Tool

The interactive selection tool was developed using Google Sheets, a familiar and easy-to-use plat-
form that allows for building interactive web interfaces without extensive web development experi-
ence. The choice of platform was inspired by the success of a similar tool used by SFUSD decision-

makers to explore trade-offs in school start times (@).
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3. Diversity Exploration: How diverse can we make zones?

Building off of our previous results, we can now start to think about diversity. In this tab, you will pick your favorite zones based on diversity, subject to the capacity constraint you set on
the previous tab. You can go back and loosen your capacity constraint if you run out of zones here!

Here, you can filter based on the largest allowable fraction of a zone that is made up of one ethnic group (Max Ethnic Group Fraction of Zone) and the maximum FRL eligibility of any
zone in the map (Max Zone FRL). Try maximum ethnic group fractions of 35%, 38%, and 40% to get started, and maximum zone FRL of 60%, 63%, and 65%.

&3 Enter your desired racial and SES values here &3 Enter your favorite zones and observations here - include your name!
Filtering Options Your Top 3 Favorite Zones

Maximum Ethnic Group Fraction of Zone 45% Rank Zone Name ‘Comment

Maximum Zone FRL 65% | 1

Minimurv Zone Deficit (from previous 10% 2

exploration)

Number of Zones Remaining 23 3

Zones meeting your criteria, sorted by increasing total racial dissimilarity: Highlighting indicates zone that you marked as favorite for CAPACITY exploration

Remaining Zones
AN Nuzr:::;of Total Racial ©  White Asian African American \ Latinxk  ©  FRL Lo 2 N E’l‘::lfl‘t’;:/a e Hover over metrics for their definitions!

6 10.2% 12.1% 9.9% 24.4% 9.8% 5.3% 60.5% 38.3%|
6 12.1% 15.6% 11.2% 20.4% 12.5% 71% 59.0% 39.7%
6 12.7% 16.3% 11.0% 23.3% 13.6% 8.1% 59.4% 38.6%)
6 12.9% 13.2% 11.2% 22.4% 16.8% 7.5% 60.4% 40.6%
6 13.0% 16.8% 13.0% 23.8% 11.4% 9.2% 60.1% 41.3%|
6 13.2% 13.8% 11.5% 20.9% 17.7% 7.5% 60.5% 41.1%)
6 13.6% 13.9% 12.2% 22.5% 17.4% 7.6% 60.5% 40.9%
7 13.7% 18.1% 13.4% 24.0% 12.5% 8.6% 64.5% 37.9%|
7 13.7% 13.2% 13.9% 26.9% 15.4% 9.0% 60.5% 41.4%
7 13.7% 23.7% 8.9% 26.2% 12.4% 1.5% 64.8% 36.0%|
7 14.5% 14.4% 14.0% 26.1% 17.3% 9.0% 60.6% 41.9%|
6 14.6% 23.4% 12.1% 26.5% 13.1% 10.4% 64.5% 37.0%|
6 14.7% 14.9% 16.2% 24.3% 15.8% 9.5% 64.0% 39.0%|
7 14.7% 19.1% 13.2% 23.8% 16.5% 8.7% 64.7% 41.3%|

Figure 16: The diversity selection stage.

The tool incorporates several design features to enhance user experience, such as color coding,
tooltips, expandable sections for detailed metrics, and a plot comparing the current zone’s perfor-
mance to other zones in the solution family (Figure ). Inspired by gerrymandering identification
strategies (? ), the tool highlights the selected map’s position in a histogram of metrics like racial
dissimilarity, illustrating the trade-offs made relative to other maps in the collection. These design
choices aim to simplify the complex task of comparing maps.

Initial testing with district staff revealed that the tool was overly complicated and ineffective due to
participants’ insufficient familiarity with the problem and the nuances of zone design. Users found
the amount of new information overwhelming, and the researchers provided insufficient problem
setup and too much information.

Another concern that arose from the workshop was the lack of aggregation of results. The selec-
tion process did not necessarily move stakeholders towards agreement, as each participant could
obtain different sets of favorite maps with little overlap. Future iterations of the selection process
should be more easily aggregated across users and help participants reach consensus.

Despite these challenges, developing the zone selection tool provided valuable insights into how
stakeholders engage with the zone design process and the appropriate level of technical complexity
for effective engagement. Future efforts will require significant simplification before expanding to

stakeholders less familiar with the problem.
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5. Reviewing Your Results

The purpose of this tab is to explore your favoite zones in more depth. Use the dropdown menu to flip through the zones you marked as your favorite during each exploration

How to use this tab:

1. Use these dropdown menus to explore
different zone options L4

Your Favorite Zones

Proximity 1 -

Your Previous Comments about this Zone:

like that no zone requires kids to travel across
Golden Gate Park

+ Expand to see seal counts

+Expand to see student counts

2. View the corresponding zone map here m

Map ID

o

Percent of Students.

75.0% 7

50.0%

25.0% _ -

0.0% \-

[citywide GE Capacity:

Racial Composition

EEEER

Not Speciied
White

Two or More Races
Pacific Islander
Hispanic/Latink
Fillpino.

Black or African American
Aslan

3. View metrics describing the schools and student population in each zone here m Hover over metrics for their definitions.

2014-15 thonugh

2018-19 and
Distict Avg_| 2021.22 averages
SCHOOLS  Total Schools 76
GE Schools 66
K-8 Schools 6
Average Color Index (out of 5) 336
Change Score 3.02
Seats minus all children ) 18,786
K seats minus K applicants 3 1269
K seats minus current Kindergarteners ©  -40 2% 86 -48 -148 -166 3 -286
GE K seats minus GE Kindergarteners = -16 60 56 -68 53 -39 53 7
Std. Dev. in Estimated GE student count *  30.8 411 238 416 414 6.9 206
FRL % " es2% 36.4% 49.3% 35.6% 50.7% 59.8% 54.1% 50.6% 50.6%
~
SPED % 75% 5.1% 6.8% 6.2% 6.6% 75% 7.9% 6.7% 6.8%
~
ELL % 22.4% 13.1% 15.6% 15.4% 22.2% 19.8% 22.0% 26.6% 18.8%
<
Level 1 Test Score % 248% 13.9% 26.8% 19.0% 23.3% 38.3% 323% 26.2% 26.2%
PROXIMITY  Average GE Options within 1 Mile N 250 365 195 253 280 353 4.63 4.67
Max Dist to Closest School Y oam 1.02 072 1.01 093 114 058 233 233
~
Avg Dist to Closest School 042 038 031 042 038 041 027 032 033
~
Max Dist to Furthest School 434 5.1 340 517 464 337 3.38 8.99 8.99
~
Avg Dist to Furthest School 253 353 246 3.86 310 236 234 5.74 5.74
STABILITY Current School Zone 1 Y 622% 37% 5.0% 1.7% 3.3% 5.6% 4.3%
Current School Zone 2 Y 109% 69.1% 12.3% 35% 2.1% 2.0% 18%
Current School Zone 3 Y on2% 19.3% 61.1% 104% 3.9% 6.2% 3.9%
Current School Zone 4 Y 70% 5.3% 15.3% 61.0% 13.5% 14.6% 9.3%
Current School Zone 5 MERELS 1.7% 18% 13.9% 58.2% 7.4% 14.9%
Current School Zone & Y s2% 05% 3.0% 6.6% 5.4% 47.7% 124%
Current School Zone 7 MRS 0.4% 1.4% 29% 13.7% 16.5% 534%
Current School Zone 8 Y 00% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
VYikWoES  Redding ES (TK: Tenderloin ES (P Grattan ES (PK-* Guadahupe ES (F MEC ES Hillcrest ES
GufieldES  ShermanES  Parks ES (PK-5) BVHM (K8)  Longlellow ES  Huerta ES (PK-5 Monroe ES
SF Montessor w Traditicns E Alvarado ES (TK West Portal ES  Bryant ES (PK-5 Cleveland ES
Cabb ES (P S Chavez ES (PK-' Sloat ES Drew ES (PK-TK Vis Valley ES
it ES (PK-5) Mascone ES (PK Orlega ES Carver ES Miraloma ES
Mckinley ES ~ Clarendon ES  Sheridan ES (PK Malcolm X ES (P Glen Park ES
Marshol ES  JeflersonES  FeinsteinES  Harle ES (PK-TK Sunnyside ES
Sanchez ES (PK Yu (K-6) Lakeshare ES  Fiynn ES (TK.5) McLaren (John) ES
il Mik ES Stevenson ES (1 Uloa ES Sema ES E1 Dorado £S
Mocoppin ES  Key ES Taylor ES (PK-5)

Argonne ES (PK Sunset ES

Havard (Leoia) E
Starr King ES (P

formance of the

ive per

hase (partial) user interface. The relat

ion p

The in depth explorat

Figure 17

d to other zones in the family of solutions.

iversity or proximity metrics compare

current zone on d
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8.4. Focus Groups

1. Look at the shape of the zones.
* Does anything look good about them?
* Does anything raise concerns?
* Are there any zones that really fit the geography of the city (hills, highways,
parks, etc.)?
* Any zones that do not make geographic sense?
2. Using your expertise as a member of your community, neighborhood, or organiza-
tion, how would the zones affect you and your community?
3. Are there any absolute deal breakers on this map? What do you feel is non-
negotiable?
4. What creative solutions can you share for any problems you see?
5. What other feedback do you have about this map? What do you want to see from

future maps to better serve students and families?

Leaders provided participants with a sample zone map, and walked through sample discussion
prompts to ensure participants understood the task. Then, participants were instructed to look at
groupings of 3 zone maps. In addition to the 3 maps, there were brief metrics capturing socio-
economic diversity, travel times, and school performance. Figure [18 shows an example of this map
and accompanying metrics. Participants then had unstructured discussion time to investigate the
maps. They were encouraged to think out loud, and leaders largely tried to remain out of the dis-
cussion, only asking clarifying questions. After roughly 10 minutes of discussion, the group would
move on to a second set of maps. The discussion process was repeated 2-3 times, showing partici-
pants a total of 6 to 9 maps. The specific maps shown were selected by district staff to represent the
broadest possible zone design possibilities. After moving through each group of maps, participants

and leaders then regrouped for a final reflection on the zone exploration process.
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© 2022 Mapbox @ OpenStreethiap

Map scores out of 10 i i
The higher the score, the better this map promotes our policy Prima ry Metrics
goals 9% of students who  Average home to Average school
Total map score: 7.1 Zone Id qualify for freeor  school walking time  performance score
Diversity score: 7.5 reduced meals (minutes} (outof 5.00)
Predictability score: 7.3 Zone ld
Proximity score: 5.6 ° e s 3.68 0o
1 40.9% 60.97 3.80 (WS
Map Total Score 2 40.6% 69.42 3.73 a2
sl == N 2 3 58.0% 46.44 273 (WE
Tahle Name 4 46.0% §2.80 3.48 Cla
GE_Zoning_2_1_1_2_2_centroids &-zone-9_BG_Is.shp 5 55,9% 56.16 313 Os
[]show history 6 Os
Grand Total 50.1% 59.13 3.41

Figure 18: Example map and metrics used in zone design focus groups.
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Number FRL Racial Shortage Initial Final
of Zones Balance Representativeness Count Selection

6 0.10 0.12 0.1 16 No

0.15 0.1 18 No

0.15 0.12 0.07 20 Yes

0.1 14 No

0.15 0.07 22 Yes

0.1 20 No

7 0.10 0.15 0.1 8 No

0.15 0.12 0.7 18 Yes

0.1 12 No

0.15 0.7 18 No

0.1 18 Yes

10 0.15 0.15 0.15 2 No

0.2 0.2 6 No

0.22 0.15 0.1 3 No

0.15 4 No

0.20 0.1 11 Yes

0.15 7 No

13 0.20 0.15 0.3 5 No

0.2 0.2 B! No

0.25 0.25 0.12 8 Yes

18 0.22 0.25 0.28 3 No

0.26 0.25 0.14 5 Yes

Table 2: Constraint selection results for zones that survive the filtering process. The initial count is
the number of positions in the consideration set, and the selected count is the positions that were

selected via the scoring process.
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